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The performance of conventional computer based on von Neumann architecture is limited due to the
physical separation of memory and processor. By synergistically integrating various sensors with
synaptic devices, recently emerging interactive neuromorphic devices can directly sense/store/process
various stimuli information from external environments and implement functions of perception,
learning, memory, and computation. In this review, we present the basic model of bioinspired
interactive neuromorphic devices and discuss the performance metrics. Next, we summarize the recent
progress and development of bioinspired interactive neuromorphic devices, which are classified into
neuromorphic tactile systems, visual systems, auditory systems, and multisensory system. They are
discussed in detail from the aspects of materials, device architectures, operating mechanisms, synaptic
plasticity, and potential applications. Additionally, the bioinspired interactive neuromorphic devices
that can fuse multiple/mixed sensing signals are proposed to address more realistic and sophisticated
problems. Finally, we discuss the pros and cons regarding to the computing neurons and integrating
sensory neurons and deliver the perspectives on interactive neuromorphic devices at the material,
device, network, and system levels. It is believed the neuromorphic devices can provide promising
solutions to next generation of interactive sensation/memory/computation toward the development of
multimodal, low-power, and large-scale intelligent systems endowed with neuromorphic features.
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Introduction
Brain is one of the most important organs of human body, sup-
porting human vision, hearing, taste, smell, learning, memory,
emotion, balance, and other perception related functions. The
structure of brain is very complex, which consists of about 86 bil-
lion neurons connected by about 1015 synapses to form an extre-
mely large and intricate biological neural network. The biological
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neural network endows brain with powerful computing and
learning capabilities, thereby enabling interactive perception
and information processing between living creatures and envi-
ronments with very low power consumption [1]. Even today’s
most powerful computers cannot compete with human brain
when handling complex tasks of pattern recognition, risk man-
agement, or decision-making activities. This can be attributed
to the following reasons. On one hand, traditional computers
relying on von Neumann architecture have the processor unit
and memory unit physically separated. Data moving back and
forth between the processor and the memory consumes lots of
1
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energy and time. So far, it has encountered the dilemma of
energy efficiency bottlenecks in memory walls and the failure
of Moore’s law [2]. On the other hand, the analog sensing signals
and digital computing signals are not compatible with each other
to be processed together. As the number of sensor nodes
increases, the raw data containing a large amount of redundant
data has gradually become a huge burden for the sensory system
[3,4]. Inspired by human brain and biological nervous system,
how to design interactive neuromorphic chips to integrate sens-
ing, storage, and processing capabilities, has become the dawn of
breaking through von Neumann’s bottleneck. The bioinspired
interactive neuromorphic devices and systems are considered of
great significance to endow intelligent Internet of Things with
neuromorphic sensing and interactive characteristics in solving
more complex realistic problems.

Fig. 1 shows the revolutionary shift in computing architecture
from the von Neumann architecture to interactive neuromor-
phic computing. Unlike traditional computer processors, neuro-
morphic chips can simulate the functions and working patterns
of human brain to handle more complicated tasks (e.g.,
somatosensory, image, and speech recognition). Hardware for
neuromorphic computing utilizes the algorithm of artificial neu-
ral network (ANN) to emulate certain functions of the human
brain by processing electrical pulse signals (analogy to the action
potentials of biological neurons). To simulate human brain’s
ability of synchronizing parallel sensation information (e.g.,
touch, vision, and sound), the connections between artificial
neurons can be readily updated through synaptic weights. This
feature allows hardware to consume less energy and enables
the processing speed of neuromorphic computation several
orders of magnitude faster than that of conventional chips.
The research and development of neuromorphic devices is
considered one of the main tracks leading to the future era of
FIGURE 1

The revolutionary shift in computing architecture from the von Neumann arch
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artificial intelligence. It is of great significance to investigate
the solid-state devices/systems from the bottom architecture to
emulate biological sensory synapses/neurons and develop ultra-
low-power brain-like chips.

Biological nervous system
Inspired by biological nervous system, it is vital to design effi-
cient neuromorphic devices with thorough understanding on
the biological neurons, synapses, and brain functions. Human
brain has 86 billion neurons (Fig. 2a) that receive and collect sig-
nals from a variety of stimuli and send the information to the
designated areas of nervous system. The integration and interac-
tion of vision, touch, hearing, smell, and taste in the human
multisensory neural network facilitate high-level cognitive func-
tionalities, such as information integration, recognition, reason-
ing, and imagination (Fig. 3a). In the humanmultisensory neural
network, sensory receptors (e.g., rods and cones, mechanorecep-
tors, cochlea, smell receptors, taste receptors) can convert the
physical information from ambient environment into potential
changes and encode the potential changes into spike trains in
the cell body using neural spike encoding. Subsequently, inter-
mediate neurons transmit the spike trains from the receptors to
the cerebral cortex in brain, where the information is decoded
into sensory perceptions for further processing (Fig. 3b) [5].
When the sensory neurons receive stimulus input from receptors
(or other neurons via dendrites), they can generate electrical sig-
nals and transmit them along axons to target neurons or mus-
cles. The connection between an axon terminal and a dendrite
on another neuron is called a synapse, which can be activated
by action potential that reaches the axon terminal. The action
potential allows calcium ions to enter the terminal, thereby acti-
vating cellular mechanisms to transport synaptic vesicles (full of
neurotransmitters) to the presynaptic membrane. Neurotrans-
itecture to bioinspired interactive neuromorphic computing.
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FIGURE 2

Comparison of human nervous system and bioinspired neuromorphic device. (a) Schematic diagrams of the human brain, neuron network, and synapse. The
basic functional elements of neural networks are neurons and synapses. The transmission of action potentials via synapse is the basis of most communication
in the nervous system. (b) Schematic diagrams of the neuromorphic chip, artificial neuron networks (ANNs), and artificial synapse. The neuromorphic chip is
composed of different types of ANNs. The operation mechanism of these ANNs is related to two-terminal memristors or three-terminal transistors.
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mitter molecules are then released into the synaptic cleft, which
can diffuse throughout the synaptic cleft to activate (or bind to)
the receptors on the postsynaptic membrane. Information trans-
fer between neurons is primarily accomplished through the
release of neurotransmitters from pre-synapse and the recogni-
tion of neurotransmitters on postsynaptic membrane. Transmis-
sion of action potentials via neurotransmitters is the basis of
most communications in the nervous system (Fig. 3c) [6].
Bioinspired interactive neuromorphic device
Model of bioinspired interactive neuromorphic device
The basic model of neuromorphic device includes the following
three progressive forms: simulation of neuronal activity at the
device level, simulation of neural network connected by
neuron-like devices at the network level, and simulation of the
interactive sensation with external environment at the system
level (Fig. 2b). The design and fabrication of artificial synapses
and ANNs are inspired from the biological synapses and neural
networks, respectively. In terms of terminal numbers, artificial
synapses are usually divided into two-terminal devices and
three-terminal devices. Their difference mainly lies in the path
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
of signal transmission and the means of weight modulation.
For instance, the right panel in Fig. 2b shows a three-terminal
synaptic transistor, which modulates the device conductance
(i.e., synaptic weight) via an external electrode terminal. In
detail, when an action potential reaches the presynaptic terminal
(gate) to modulate ions migration/distribution in electrolyte, an
electrostatic potential is induced to affect the channel conduc-
tance and results in a tunable postsynaptic current (between
the source and drain).

Daily activities of human beings (e.g., thinking, learning, and
action control) rely on the brain to receive information from
inside and outside of the body. Various information is transmit-
ted through the biological nervous system, which constitutes the
five basic senses of sight, hearing, smell, touch, and taste, as well
as the basic functional systems of somatosensory system,
vestibular system, internal sensory system, etc. The developed
synaptic devices in early days mainly use electrical pulse as a
stimulus signal, which are lack of emulation on various sensory
behaviors. To emulate a more realistic nervous system, it is nec-
essary to explore the effect of sensory signals on the updating
process of synaptic weights. How to further implement sophisti-
cated weight-updating through multiple/mixed sensory mode is
3

16/j.mattod.2022.09.012

https://doi.org/10.1016/j.mattod.2022.09.012


FIGURE 3

(a) Biological multisensory system. (b) A biological afferent nerve. Stimulus applied to receptors change the potential of each receptor. The receptor
potentials combine and initiate action potentials at the heminode. Nerve fibers form synapses with interneurons. Action potentials from multiple nerve fibers
combine via synapses to facilitate information processing. (c) Action potential and schematic diagram of ion exchange mechanism. (i) In the resting state,
potassium ions dominate the cell membrane, and the equilibrium potential is negative. (ii) Sodium channels are activated by excitatory neurotransmitters,
prompting sodium ions to flow into the membrane. (iii) More sodium channels are activated when the membrane potential increases to a certain threshold,
resulting in a short, large voltage spike. The region with the membrane potential rising from �70 to 0 mV defines the depolarization process. When the
membrane potential further increases from 0 to +35 mV, the membrane potential becomes internally positive and externally negative, forming the
polarization process. (iv) When the sodium channel is closed and the potassium channel is opened, the membrane potential returns to the negative
potassium equilibrium state, i.e., repolarization. (v) All channels are reset and the cells return to resting state dominated by potassium ion. Due to the increase
of negative charge in the membrane, the voltage is usually lower than the resting potential. The membrane potential dropping below �70 mV can be
attributed to the remaining-opened potassium channels, which allow more potassium ions to diffuse out of the membrane and lead to the negative
membrane potential. This process is also known as hyperpolarization.
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also an urgent issue. A bioinspired interactive neuromorphic
device typically includes a bionic receptor integrated with an
artificial synapse. The bionic receptor is used to perceive external
stimuli (e.g., pressure, sound, light, and heat) and convert the
stimuli into electrical signals (i.e., the input action signals trans-
mitted to the presynaptic terminal of artificial synapse). After
receiving the action signal from the bionic receptor, the synaptic
device is activated to generate a postsynaptic current (Fig. 4a).
4
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Bionic receptor
To achieve the interactive neuromorphic devices, different types
of bionic receptors are primarily required to emulate various bio-
logical receptors (Fig. 4b). For instance, the main types of bionic
mechanoreceptors can be designed based on resistive, capacitive,
piezoelectric, and triboelectric sensors. Bionic mechanoreceptors
are analogous to biological mechanoreceptors located on the
skin (e.g., ring corpuscles and Merkel’s discs), which can sense
16/j.mattod.2022.09.012
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FIGURE 4

(a) Schematic diagram of the signal processing steps of the bioinspired interactive neuromorphic devices. (b) Schematic Illustration of various bioinspired
interactive neuromorphic devices. (i) MIM structure. (ii) EGFET structure. (iii) FeFET structure. (iv) FGFET structure. (v) vdW heterostructure FET structure.
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mechanical signals of pressure, touch, stretch, and vibration. Bio-
nic pain receptors are mainly chemical sensors and are analogous
to biological chemical receptors. This type of receptor is used to
simulate the unpleasant feeling when the body is subjected to
noxious stimuli. Bionic thermoreceptors are mostly thermoelec-
tric devices which can be used to simulate the body’s response
to temperature changes. Bionic phonoreceptors are used to emu-
late the function of cochlea to detect the vibratory stimuli, which
are further incorporated with synaptic devices to mimic the sense
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
of hearing by simulating nerve impulses and transmitting them
to the artificial auditory centers of the cerebral cortex. Bionic
visual receptors can be used to emulate the function of retina
to detect visual signals and construct complex visual systems.
Optoelectronic synaptic devices based on photoconductive
materials can be used to simulate typical behaviors of photonic
synapses and fabricated into visual sensor array (or ANNs) to
implement image recognition, simulate artificial adaptive
retinas, etc. [7–14].
5
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Artificial synapse
Biological synapses are characterized by plasticity that controls
the strength of connections between neurons (i.e., synaptic
weight), which is the basis for biological systems to achieve
learning, reasoning, and other intelligent functions [15]. In
ANN, the connections between neurons are also constructed
based on a mathematical model of synaptic plasticity. Inspired
by the weight-updating process (i.e., conductance modulation)
in biological synapses, artificial synapses utilize the readily tun-
able conductivity in novel electronic materials to simulate the
typical electrical characteristics of biological synapses. In recent
years, various electronic devices have been constructed to simu-
late synaptic plasticity, which is expected to be a breakthrough
and promising means to neuromorphic engineering and compu-
tation. Two-terminal memristors with point-to-point connection
properties have been extensively studied as neuromorphic
devices [16–22]; three-terminal synaptic transistor showing
point-to-line properties are also emerging to simulate synaptic
functions and emulate sensory neurons [23–30]. Three-terminal
transistors are quite different from two-terminal memristors as
it uses different channels for signal-transmitting (source to drain)
and weight-updating (gate to source). Optional device architec-
tures can be used for three-terminal synaptic transistors, includ-
ing electrolyte-gated transistor, ferroelectric transistor, floating-
gate transistor, and van der Waals heterostructure transistor
(Fig. 4b). Based on the intrinsic properties of active materials
(e.g., piezoelectric, triboelectric, optoelectronic, thermoelectric,
electrochemical, and phase transition), two-/three-/multi-
terminal synaptic devices can be readily designed by appropriate
material selection and structural design. Bionic receptors can also
be systematically integrated to link external physical stimuli
(pressure, vibration, light, temperature, etc.) with neuromorphic
electrical signals, realizing direct interaction between external
environment and artificial synapses (or afferent nerves)
[13,29,31,32], i.e., bioinspired interactive neuromorphic devices.

Memristor
The progressively precise synthesis methods of nanoscale materi-
als and paired nanofabrication techniques have facilitated the
development of memristors [33]. Memristors generally use a typ-
ical metal–insulator-metal (MIM) structure with the insulator
layer sandwiched by twometal electrodes (Fig. 4b-i) [18,33]. High
resistance materials (e.g., metal oxides [34–36], chalcogenide
materials [37], 2D transition metal dichalcogenides (TMD) [38],
perovskites [39–42], and heterostructures [43]) are usually used
as the insulating layer of memristor. The working mechanism
of memristor relies on the transition between high resistance
and low resistance states caused by the formation of conductive
filament or the phase change of insulating materials [17]. Mem-
ristors have become an important candidate for synaptic devices
in neuromorphic chips due to their continuously adjustable
resistance, non-volatile information storage, low power con-
sumption, high integration, etc.

Electrolyte-gated synaptic transistor
To meet the key requirements for low power consumption in
synaptic devices, there is an urgent need for devices to operate
in low voltage. Device engineering on dielectric layers with
6
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ultra-high capacitance has attracted considerable attentions
[44]. An electrolyte gate field-effect transistor (EGFET) is a typical
low-voltage-operating device that uses the coupling effect
between the ions in the electrolyte and the charge carriers in
the semiconductor to realize effective modulation on channel
conductance [45,46]. In general, electrolyte-gated transistors
can be classified into two categories depending on whether ions
react with the semiconductor material, including electrostati-
cally controlled electric double layer FETs (EDL-FETs) and electro-
chemical FETs [47]. The migration of ions in the electrolyte gate
under an applied electric field can readily simulate the response
of neurotransmitters to action potentials, which has significantly
contributed to the research on neuromorphic devices in recent
years. The gate electrode and semiconductor channel of EGFET
are analogous to the presynaptic terminal and postsynaptic
membrane, respectively (Fig. 4b-ii). The EDL-FET based synaptic
devices mainly cover organic semiconductor [44,48], oxide
[8,49–51], or 2D semiconductor [52] transistors controlled by
ionic liquid or proton conductor, relying on the formation of
EDLs at the interfaces of semiconductor channel/electrolyte
and gate electrode/electrolyte [53]. The electrochemical FET
based synaptic devices implement gate modulation based on
the redox reaction of a modified semiconductor (e.g., poly(3,4-
ethylenedioxythiophene)/poly(styrene sulfonic acid), PEDOT:
PSS). In this way, the emulation of neural signals can be realized
at ultralow operating voltages, thereby reducing the power con-
sumption of a single spike in the artificial neuron [54]. Besides,
ion-controlled synaptic devices based on the intercalation and
delamination of lithium ions in 2D semiconductor materials
can also induce the conductance changes in transistor channels,
which have recently been widely used in artificial synapse studies
[28,38].

Ferroelectric-gated synaptic transistor
A ferroelectric field-effect transistor (FeFET, Fig. 4b-iii) is a type of
storage device that uses ferroelectric insulators (e.g., bulk per-
ovskites [55], doped hafnium oxides [56], and piezoelectric
copolymers [57]) as gate dielectrics, exhibiting non-volatile,
low-power-consuming, and high-speed writing/erasing proper-
ties [58]. Early industry attempts at ferroelectric devices based
on perovskite-structured composite oxide ferroelectrics. Until
2011, the discovery of ferroelectricity in fluorite-structured bin-
ary oxides (e.g., hafnium oxide, HfO2) have revived the research
enthusiasm in FeFET for advanced microelectronics and modern
semiconductor industry [59,60]. According to the reversable
remanent-polarization in the ferroelectric insulating layer, the
threshold voltage and channel conductance of the FeFET can
be readily modulated by varying the gate voltage to change the
polarization state of ferroelectric dielectrics [27,46,61]. The
purely electrical modulation on channel conductance through
ferroelectric polarization has also received extensive attentions
to simulate typical synaptic properties (e.g., long-term potentia-
tion/depression and spike-timing dependent plasticity), which
can enable both functions of information processing and storage
[62]. Although the retention time of conventional FeFETs is lim-
ited due to the presence of charge traps and gate leakage currents,
recently emerging 2D ferroelectric materials can potentially solve
these problems because the polarization process of the device
16/j.mattod.2022.09.012
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occurs in the channel material itself rather than within the gate
dielectrics [63]. 2D ferroelectric materials also exhibit robust fer-
roelectricity and nonvolatile memory properties without anneal-
ing at room temperature [63,64]. Furthermore, 2D layered
ferroelectric semiconductors have the potential for continuous
size reduction in atomic thickness, which are highly promising
for future high-density integration and neuromorphic comput-
ing [64].

Floating-gate synaptic transistor
Floating-gate field effect transistor (FGFET) shows a similar struc-
ture to conventional transistor, but has an additional layer of
floating gate embedded in dielectrics (Fig. 4b-iv) [65]. Conven-
tional FETs typically exhibit volatile behavior due to the rapid
dissipation of the accumulated charges in channel when the gate
voltage disappears. For FGFET, the floating-gate can be consid-
ered as a charge trapper, which deliver a shielding effect to the
applied gate voltage, thus retaining the channel conductance
and providing long-term storage performance [65]. This non-
volatile storage characteristic facilitates the simulation of long-
term plasticity behavior of synapses [10,66]. However, high oper-
ating voltages (�20 V) and long response time (10–100 ms) are
required for information writing/erasing and data storage, which
limits the extensive development of FGFETs. When device size
gets closer to the physical limit, the industry urgently calls for
new structures and new principles of transistors and memories
to gain the improvements on operation speed, integration den-
sity, and power consumption. Recently, semi-floating-gated FETs
(SFGFETs) have been successfully designed with low operating
voltage, large threshold window, and ultra-high-speed writing
process (in nanoseconds) [67–69]. In the SFGFET, a p-n junction
diode is formed between the floating gate and the drain to con-
stitute a tunneling FET, which thereby makes the floating gate
turn to semi-floating geometry. Thus, four regions are formed
in the SFGFET, including drain, source, control gate, and semi-
floating gate [69]. The reported SFGFET mainly relies on comple-
mentary metal–oxidesemiconductor (CMOS) technology or van
der Waals heterostructure technology. By manipulating the type
and density of charge carriers in the semi-floating gate, the chan-
nel conductance can exhibit non-volatile and continuous varia-
tion. This type of devices has also been shown to have the
potential to emulate advanced neuromorphic computing with
ultrahigh speed and long refresh time [68,70].

vdW heterostructure synaptic transistor
In 2D material family, layered materials are readily stacked by
van der Waals (vdW) force to form vdW heterostructures. Tran-
sistors based on this structure are defined as vdW heterostructure
transistors [71]. In vdW heterostructures, the combination of 2D
materials with different band gaps can lead to some unique phys-
ical properties (electrical or optical properties), which can be used
to simulate special synaptic behaviors (Fig. 4b-v). For examples,
the tunable electrical properties of heterostructure between black
phosphorus (BP) and tin selenide (SnSe) are used to simulate dif-
ferent states of synaptic connection, where excitatory and inhibi-
tory postsynaptic currents can be dynamically reconstructed
[72]. By exploiting the gate-tunable and persistent photoconduc-
tivity of graphene and MoS2 heterostructures [73,74], a
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
mechano-photonic artificial synapse based on graphene/MoS2
heterostructure is realized [13]. The vdW heterostructure concept
can also be extended to the combination of 2D materials with
other functional materials in different dimensions [75], e.g.,
hybridized quantum dots [76], nanowires/nanotubes [77], thin-
film semiconductors [78], etc. The enormous family of
heterostructures is highly promising for enriching the synaptic
devices with versatile functionalities. In addition, the participa-
tion of 2D layered materials provides a more flexible and conve-
nient approach to on-demand design of neuromorphic devices.
Extensive investigation on 2D vdW heterostructures may pave
the way to breaking through Moore’s law and achieving high-
performance electronic devices with reconfigurability, versatility,
and flexibility.

Figure of merits
Comprehensive evaluating the figure of merits for interactive
neuromorphic devices is of great significance to improve the
sensing activity, interactive efficacy, learning accuracy, and
energy efficiency. The desirable characteristics are mainly dis-
cussed from the aspects of synaptic plasticity, energy consump-
tion, dynamic range, linearity and symmetry, and stability and
reliability.

Synaptic plasticity
Generally, synaptic plasticity can be divided into short-term plas-
ticity (STP) and long-term plasticity (LTP). The STP is activated by
transient stimuli and capable to recover in a short time, which
can be reflected in two typical behaviors of paired-pulse facilita-
tion (PPF) and paired-pulse depression (PPD). PPF refers to an
increase in PSC evoked by a second spike when the second spike
immediately follows the previous one. PPF is considered to be
important for the decoding of temporal information in biological
systems [79,80], which can be evaluated by PPF index (A2/A1,
where A1 and A2 represent the amplitudes of the first and second
PSCs, respectively) [81]. In contrast, the LTP evoked by unremit-
ting or multiple stimuli shows persistent facilitatory or inhibitory
effects, manifesting long-term potentiation or depression behav-
iors. The exhibited LTP behavior is mainly determined by the
weight updating mechanism used for ANN simulations (dis-
cussed later in Fig. 7) [15]. The basic principle of synaptic plastic-
ity is described by Hebbian Rule proposed by Hebb in 1949,
which indicates that successive (or repeated) stimulation on
postsynaptic neurons by presynaptic neurons can lead to
enhanced synaptic transmission efficiency [82]. Based on this
theory, the spike-timing dependent plasticity (STDP) learning
method proposed in 1997 describes how to adjust the strength
of connections between neurons according to their learning
orders [83,84].

Energy consumption
As the energy dissipation of biological synapses is close to 10 fJ, it
is essential to reduce the energy dissipation of artificial synapses.
In biological synapses, the spike voltage is � 10 mV, the ionic
current is � 1nA, and the spike period is � 1 ms, resulting in
an energy of about 10 fJ [85]. The energy dissipation (E) of a sin-
gle spike event is determined by the peak current of conductive
channel (Ipeak), the drain voltage (VD), and presynaptic-spike
7
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duration (t), which can be calculated as E = VD � Ipeak � t. Accord-
ingly, further device engineering is needed to reduce energy con-
sumption, e.g., accelerating the writing speed to �ns [68,86] or
reducing the operating voltage to �mV [48,87] while maintain-
ing its conductance modulation properties.
Dynamic range (on/off ratio)
The dynamic range is defined as the on/off ratio of the maximum
conductance to the minimum conductance (Gmax/Gmin), which
is used to describe the total modulation range by synaptic devices
[88]. Larger on/off ratio implies better mapping capability of the
synaptic weights in the algorithm to the device conductance.
This is because the synaptic weights in the algorithm are com-
monly normalized over a range between 0 and 1 [85].
Linearity and symmetry
The linearity refers to the extracted linearity from the curve of
synaptic device conductance vs input pulses number (or the
number of stimuli), which should be linear in the ideal circum-
stance. Symmetry refers to the curve symmetry between the tra-
jectory of conductance-increasing process (potentiation) and the
trajectory of conductance-decreasing process (depression). In
most cases, the weight updating curves of either two-terminal
or three-terminal synaptic devices exhibit nonlinearity and
asymmetry, which will inevitably cause the reduction in the
learning accuracy of artificial neural networks. Changing the
pulse input regime can help to attenuate this effect, but it may
aggravate the processing burden of sensor unit and peripheral
circuitry [33,85,88–90].
Stability and reliability
Stability and reliability are critical for the on-chip integration of
bioinspired interactive neuromorphic devices, in terms of both
the cyclic stability of each unit (sensor and synaptic devices)
and the device-to-device reliability. Random variations in con-
ductivity due to the instability and unreliability of each unit
may raise the risk of degradation in computing capability and
learning accuracy for the integrated chip.

Fig. 5 shows the timeline of milestones in pursuing bioin-
spired interactive neuromorphic devices. In this review, we sum-
marize the recent progress and development of bioinspired
interactive neuromorphic devices, which are classified into neu-
romorphic tactile systems, visual systems, auditory systems, and
multisensory systems. They are discussed in detail from the
aspects of materials, device architectures, operating mechanisms,
synaptic plasticity, and potential applications. Additionally, the
bioinspired interactive neuromorphic devices that can fuse mul-
tiple/mixed sensing signals are proposed to address more realistic
and sophisticated problems. Finally, we deliver the perspectives
on interactive neuromorphic devices at the material, device, net-
work, and system levels. It is believed the neuromorphic devices
can provide promising solutions to next generation of interactive
sensation/memory/computation toward the development of
multimodal, low-power, and large-scale intelligent systems
endowed with neuromorphic features.
8
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Bioinspired neuromorphic tactile system
The cooperation of receptors, neurons, and synapses in the
somatosensory system allows for effective recognition and pro-
cessing on complex tactile information [31]. Physiologically,
the tactile signals are detected by mechanoreceptors on the skin.
As shown in Fig. 6a, the tactile stimuli signals are transmitted
along a long string of axons through synapses to postsynaptic
neurons for further processing and recognition on the tactile
information [91,92]. The skin of organisms is covered with differ-
ent types of mechanoreceptors that are used to record specific
types of tactile stimuli and to perform the function of pressure
and touch recognition. For example, pressure receptors are
mainly composed of Pacinian corpuscles, which are fast adaptive
receptors used to perceive pressure. Touch receptors mainly con-
sist of Meisner bodies, Rufini bodies, and Merkel discs, which are
usually slowly adaptive receptors used to perceive touch informa-
tion [93]. According to different working mechanisms, the bionic
mechanoreceptors can be classified into resistive, capacitive,
piezoelectric, and triboelectric sensors. Resistive and capacitive
mechanoreceptors can sense continuous static forces, while
piezoelectric and triboelectric mechanoreceptors can sense
instantaneous dynamic pressures [94].

Table 1 summarizes the bioinspired neuromorphic tactile sys-
tems (NTS) activated by artificial bionic mechanoreceptors,
including capacitive-NTS, resistive-NTS, piezoelectric-NTS, and
triboelectric-NTS. As a specific category, the EDL-NTS is discussed
in Section “EDL structure based neuromorphic tactile system”.
The artificial reflex arc and adaptive systems in a more complete
form are discussed in Section “Artificial reflex arc”.
Capacitive neuromorphic tactile system
Regarding to the primary requirements for pressure/strain/tactile
sensation in NTS, it is a challenge to building efficient devices by
integrating pressure sensing components and signal processing
units. Recently, a capacitive pressure sensor based on organic
field-effect transistor (OFET) with high sensitivity (8–192 kPa�1)
has been well developed to emulate the functions of biological
mechanoreceptor [44,95]. Integrating the pressure sensory OFET
(capable of sensing instantaneous pressure stimulation) with
another organic synaptic transistor to form a dual-OFET-based
synaptic device is a pioneering study toward capacitive neuro-
morphic tactile system. The capacitive-NTS is composed of a
capacitive mechanoreceptor with pressure sensing function and
a proton conductor gated synaptic transistor with signal process-
ing function, achieving the functional fusion of signal transduc-
tion and information processing. Fig. 6b shows the simplified
schematic diagram of a capacitive-NTS. The capacitance of the
pressure sensor varies with the applied external pressure and is
converted into a pulsed electrical signal that is transmitted
through the gate to the presynaptic terminal of the second
organic synaptic transistor. When the presynaptic terminal
receives the pulse signal, the migration of protons in the dielec-
tric layer affects the accumulation state of charge carries in the
organic semiconductor channel. As a result, the postsynaptic cur-
rent (PSC) will be modulated across the source and drain elec-
trodes. The characteristics of the PSC response depend on the
amplitude, frequency, and duration of the applied pressure.
16/j.mattod.2022.09.012
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FIGURE 5

Timeline of milestones for pursuing bioinspired interactive neuromorphic devices.
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Therefore, by detecting the change of PSC in the capacitive-NTS,
dynamic pressure signals, time-dependent characteristics, and
comprehensive tactile information can be collected and ana-
lyzed. The capacitive-NTS provides a reference to the compatible
integration of pressure sensors and intelligent devices with
synaptic functions [44].
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
Resistive neuromorphic tactile system
Neuromorphic tactile processing unit based on resistive pressure
sensor and synaptic device is proposed to integrate and distin-
guish the temporal and spatial characteristics of touch signals.
Typical resistive-NTS consists of a resistive pressure sensor and
a synaptic device, corresponding to the sensory receptors and
9
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FIGURE 6

Biological tactile afferent nerve and bioinspired neuromorphic tactile system. (a) Schematic diagram of biological tactile afferent nerve. (b) Capacitive NTS: a
capacitive pressure sensor activated artificial synaptic device. (c) Resistive NTS: a resistive pressure sensor activated artificial synaptic device. (d) Piezoelectric
NTS: a PENG activated artificial synaptic device. (e) Triboelectric NTS: a TENG activated artificial synaptic device. (f) Multi-signal NTS: two or more sensors
activated artificial synaptic device. (g) EDL structure activated neuromorphic tactile system (EDL-NTS). (h) Artificial reflex arc.

TABLE 1

Summary of bioinspired neuromorphic tactile systems (NTS).

NTS structure Mechanoreceptor Synaptic device Synaptic behavior Refs.

Structure Active material Dielectric
material

Capacitive-NTS OFET-based sensor EGFET PDPP3T Chitosan Tactile-perception [44]
- EDL structure Graphite - Multi-point stimulation [111]

Resistive-NTS CNT sensor/Ion cable EGFET IWO PVA Tactile pattern recognition [92]
CNT sensor/Oscillator EGFET Conjugated

polymer
Ion gel Braille recognition, reflex arc [31]

Rubber-based sensor EGFET P3HT-NF Ion gel PPF, STP, LTP [99]
PDMS/AgNWs sensor
array

Memristor
array

Au/TiW/HfO2/Au - Near-sensor computing [100]

Piezoelectric-
NTS

Polymer-based PENG EGFET Graphene Ion gel EPSC, IPSC, PPF, dynamic logic [29]
GaN-based PENG Heterostructure AlGaN/AlN/GaN - Human reflex [104]
- Heterostructure NiO/ZnO - PPF, STDP, spatiotemporal tactile

sensing
[184]

Triboelectric-
NTS

TENG FGFET MoS2 HfO2 PPD/F, STP/LTP, dynamic logic [66]
TENG FeFET Pentacene BT/P(VDF-TrFE) STP/LTP [110]
TENG EGFET MoS2 Ion gel EPSC, PPF, spatiotemporal tactile

sensing
[32]

TENG EGFET P3HT-NF Ion gel Neurorobot locomotion [99]
TENG EGFET PDVT-10 Ion gel EPSC, PPF, STP to LTP, dynamic logic [185]
TENG EGFET MoS2 Proton conductor EPSC, PPF [109]
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information-processing synapses in biological system, respec-
tively (Fig. 6c). The resistive pressure sensor is used as bionic
mechanoreceptor, whose function is to convert pressure stimuli
into electrical signals and transmit them to the presynaptic ter-
minal of the synaptic device.

Pyramid-micro-structured polydimethylsiloxane (PDMS)
coated with a conductive layer has been extensively investigated
as the active sensing unit for pressure sensor [31,96–98]. Chen’s
group [92] designs a resistive-NTS composed of a carbonnanotube
(CNT) based micro-structured resistive pressure sensor, an ionic
cable, and an electrolyte gated indium tungsten oxide (IWO) tran-
sistor. When an external force is applied on the pressure sensor,
the induced resistance change causes a voltage drop across the
ionic cable. The voltage drop will cause different voltage pulse sig-
nals to be transmitted to the transistor channel and implement
field-effect modulation. The strong electrical field induced by
ion migration adjusts the charge carrier density in the channel,
resulting in the PSC response. When the pressure is maintained,
more ions are accumulated at the interface, which enhances the
amplitude of PSC. After the pressure is released, the voltage drop
on the ionic cable will suddenly decrease, the ions will gradually
drift back to their equilibrium positions, and the PSC will gradu-
ally return to the initial level. Based on the electrical response of
the resistive-NTS to external stimulation/attenuation signal, the
applied tactile characteristics can be recognized and extracted.

In 2018, scientists have integrated a CNT-based pressure sensor
with an OFET-based oscillator to form an artificial afferent nerve
[31]. This structure design has the advantage that the pressure sig-
nals are directly converted into voltage signals with frequency
characteristics by the ring oscillator, which can be used to emulate
mechanoreceptors and artificial nerve fibers. The electrical signal
from the artificial nerve fiber can be converted into PSC via a
synaptic transistor. The decoupling and analyzing of signals from
multiple mechanical stimulations are also critical to realize spa-
tiotemporal recognition on multiple stimulus signals (Fig. 6f). By
analyzing the frequency information of electrical signals from
multiple resistive mechanoreceptors, the demonstrated artificial
afferents can be used to realize shape recognition, motion detec-
tion, and braille recognition in simple scenes [31].

Stretchable NTS based on elastic rubber materials is able to
exhibit a full range of synaptic properties, which can even retain
50 % of the initial synaptic properties under the stretching state
[99]. In the stretchable NTS, rubber-based resistive mechanore-
ceptor is used to detect external physical stimuli. The induced
presynaptic pulses can excite synaptic transistors to generate
PSC, which are demonstrated to be capable to activate the biolog-
ical nerves or engineering counterparts. Even under the stretch-
ing state, the PSCs mapping can be obtained based on the
sensory pixels in the NTS array.

A resistive NTS by integrating ultrasensitive pyramidal pres-
sure sensor array for tactile sensing and a flexible memristor array
for multi-sensory data processing is recently reported by Chen’s
group, which enables near-sensor analogue computing. The core
of this resistive NTS array utilizes a memristor computing array
that enables vector–matrix multiplication operations, allowing
direct processing of multiple tactile signals captured by the pres-
sure sensor array without the need for analog-to-digital conver-
sion. Flexible memristor array based on a stacked dielectric
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
structure of Au/TiW/HfO2/Au works as the key computation
component, exhibiting reliable and reproducible switching
behavior, multilevel and stable conductivity states, and good
flexibility. The resistive NTS can detect pressure signals in real
time and is expected to be mounted on a finger or prosthesis
to detect edge information of external objects. Moreover, the
response time for one time operation of the sensing-computing
process is 400 nanoseconds, and the average power consumption
is 1000 times lower than that of the conventional interface elec-
tronic systems. This ultra-fast and energy-efficient artificial skin
system will reshape human–computer interaction in the future
and change the operation fashion of many existing smart appli-
cations [100].

Piezoelectric neuromorphic tactile system
Applying pressures on specific materials with non-
centrosymmetric structures (e.g., piezoelectric ceramics, wurtzite
structures, and piezoelectric polymers) will induce piezoelectric
potential [101–103]. The piezoelectric potential can be delivered
to a synaptic device to construct a piezoelectric-NTS to perceive
the spatio-temporal touch information (Fig. 6d). For example, a
piezoelectric graphene artificial sensory synapse is demonstrated
by combining a piezoelectric nanogenerator (PENG) and an elec-
trolyte gated graphene transistor. It can be regarded as a sensory
nervous system by including sensing, transmission, and process-
ing units [29]. Upon mechanical deformation, the dipoles in the
piezoelectric polymer are aligned in a uniform direction to
induce a piezoelectric potential, which promotes the PENG com-
ponent to work as a self-powered mechanoreceptor. Under the
influence of piezoelectric potential, ions in the electrolyte dielec-
trics will migrate and redistribute to regulate the conductance of
graphene channel and induce PSC response. The relationship
between the piezoelectric polarization induced by mechanical
stimulation and the transport characteristics of semiconductors
endows the PSC with temporal and spatial information of exter-
nal stimuli. The unique ionic response behaviors and strong
ion/electron coupling phenomenon at the interface of
graphene/ion-gel lay the foundation for biomimetic nerve and
biochemical sensing applications.

Inspired by the working mechanism of biological reflex, an
NTS based on the piezoelectric effect of wurtzite-structured gal-
lium nitride (GaN) is proposed, which can adjust the output of
synaptic devices by directly responding to mechanical stimuli
[104]. It utilizes a simple cantilever structure to realize the pres-
sure sensing, which greatly simplifies the complexity of the sys-
tem. A piezoelectric potential can be induced when the
cantilever beam subjected to an applied strain, which will cause
the concentration of two-dimensional electron gas to change at
the interface of the semiconductor heterostructures. In this
way, the piezoelectric potential can regulate the electron trans-
port in the synaptic transistor to simulate the biological reflec-
tion process. This work demonstrates the output of synaptic
transistor can be directly and effectively adjusted through weak
mechanical stimulation.

Triboelectric activated neuromorphic tactile system
Based on the contact-electrification effect, the mechanical dis-
placement of the triboelectric nanogenerator (TENG) can gener-
11
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ate triboelectric potential and provide energy for distributed elec-
tronic devices or sensors in the Internet of Things [105,106]. By
coupling the triboelectric potential with a semiconductor device,
the electronic transport characteristics of semiconductor channel
can be directly and actively controlled by mechanical input
[103,107,108]. The combination of TENG and synaptic device
can directly link the mechanical actions with artificial synaptic
behaviors, demonstrating a prototype for more realistic neuro-
morphic devices (Fig. 6e). Several triboelectric-NTSs have been
reported, including tribotronic EGFET [109], tribotronic FeFET
[110], tribotronic FGFET [66], and tribotronic SFGFET [70]. The
external mechanical actions exerted on TENG can be easily con-
verted into voltage spikes (i.e., action potentials), which can be
captured by synaptic devices to identify the coded spatiotempo-
ral input characteristics and transmit corresponding feedbacks
(or regulating instructions). In addition, the converted mechan-
ical energy can be used to drive the synaptic device in a self-
powered way, which can significantly reduce energy dissipation.

Based on the working mechanism of triboelectric-NTS, an arti-
ficial afferent nerve activated by contact electrification has been
proposed to simulate the function of human sensory system. The
triboelectric-NTS is composed of a self-activating component
(TENG) and a MoS2-based EGFET. As the TENGmechanoreceptor
can be designed to work in different modes, it can be used to
monitor different types of stimulus information including
mechanical displacement, lateral-sliding motion, tactile signal,
and pressure. The triboelectric signals activated EGFET further
endows the system with the ability of spatiotemporal recogni-
tion on external stimuli. The demonstrated artificial afferent
can be used to build dynamic logic and identify the frequency/
amplitude of external actions. Recognition on spatiotemporal
touch patterns has also been successfully proved to trigger corre-
sponding LED logic (simulate the behavior of a virtual stimulus
in the cerebral cortex) [32].

A triboelectric-NTS based on tribotronic FeFET is also con-
structed by coupling triboelectric effect with soft organic FeFET
[110]. Triboelectric potential by mechanical stimulation induces
the dipole alignment in ferroelectric gate dielectrics to modulate
the PSC signals. In the tribotronic FeFET, tunable synaptic
weights can be achieved by changing the composition of ferro-
electric layer. The number and sequence of external touches
can also be recognized through the triboelectric-NTS without
additional signal processing circuits.

A versatile mechanoplastic triboelectric-NTS is also achieved
based on tribotronic FGFET, in which the terminology of
“mechanoplastic” is named relying on the utilization of mechan-
ical behavior to regulate synaptic plasticity [66]. The
mechanoplastic triboelectric-NTS is composed of a TENG artifi-
cial mechanoreceptor and a MoS2 synaptic transistor with float-
ing gate. The mechanical displacement can induce triboelectric
potential to couple with the FGFET, trigger PSC signal, adjust
synaptic weight, and realize the mechanical behavior-derived
synaptic plasticity (i.e., mechanoplasticity). Thanks to the charge
trapping in floating gate, the system can implement both STP
and LTP controlled by mechanical displacement in an active
and interactive way. Based on the LTP behaviors, neuromorphic
logic switch (AND and OR) can be successfully implemented
through the mechanoplasticity without complex CMOS circuits.
12
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Under the synergistic effect of mechanical actions and semi-
floating gates, a SFGFET based on graphene/hexagonal boron
nitride (h-BN)/tungsten diselenide (WSe2) vdW heterostructure
has also been demonstrated with mechanoplasticity, including
mechanical facilitation/depression, mechanical action derived
STP/LTP, and learning behaviors [70].

EDL structure based neuromorphic tactile system
The EDL-NTS based on individual EDL structure allows the inte-
gration of perception, recognition, and transmission functions
(Fig. 6g) [111]. The reported EDL-NTS consists of two conductive
graphite electrodes drawn on a paper substrate, in which the two
electrodes are opposite to each other and separated by a spacer.
The EDL structure is equivalent to a device composed of multiple
resistor units, which can be used for multi-point stimulation. The
location of the mechanical stimulus can be determined by ana-
lyzing the magnitude of resistive response, thus mimicking the
temporal and spatial dynamic logic function of biological neural
network. The EDL-NTS has the advantages of fast response, good
durability, personalized/custom tailing, and “zero” quiescent dis-
sipation. In addition, the device is flexible and has the potential
to be selectively drawn in arbitrary patterns, which is promising
to achieve sophisticated paper-based neuromorphic tactile
systems.

Artificial reflex arc
The transmission pathway from mechanoreceptor to synaptic
device is the front-end of the whole neuromorphic tactile sys-
tem. Synaptic devices can be used to connect with biological
efferent nerves (or engineering counterparts) to form the com-
plete artificial or (hybridized) synaptic reflex arcs (Fig. 6h) [31].
For example, the NTS can be connected to a motor/control unit
(e.g., insect leg [31], actuator [112,113], pneumatic robot [99]) to
construct a hybrid bioelectronic reflex arc to simulate the activa-
tion process of muscles. These systems have shown huge poten-
tials in the applications of neurorobotics and neural prosthetics.

In addition to emulating the basic reflex arc by resistive-NTS
[31], more adaptive functions can also be achieved through
triboelectric-NTS/piezoelectric-NTS. Based on a triboelectric-NTS
and a soft pneumatic robot with functional elastic skin, the soft
robot uses artificial synapses to store encoded signals to program-
matically sense mechanical taps for adaptive motions [99,104].
Inspired by reflex arcs, a piezoelectric-NTS-based strain-
controlled power device can quickly and directly adjust the out-
put response to external strain, which can be used to directly
control the output signals by acceleration (or implement recog-
nition on acceleration feedback). The piezoelectric-NTS can also
be used to simulate the automatic adjustment functions based
on the output signals in intelligent devices, exhibiting great
potential for emergency braking in automatic driving or posture
adjustment in robots. The demonstrated acceleration feedback
control system proves the feasibility of NTS to providing appro-
priate feedbacks to external mechanical stimuli, which can help
to enrich more advanced applications of bioinspired interactive
neuromorphic devices [104].

Although various NTSs have been proposed and well devel-
oped, there are still some problems to be solved. First, the device
structure is relatively monotonous. Synaptic transistors based on
16/j.mattod.2022.09.012
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sensory stimulation are still dominant, which limits the develop-
ment of NTS toward multifunctionality. In the future, it is neces-
sary to develop other alternative devices or configurations for
sensory and neuromorphic components, which is of great signif-
icance to enrich more functionalities of NTS. Second, the use of
ionic dielectrics reduces the power consumption of the device,
but it introduces environmental instability against temperature
and humidity. Therefore, appropriate encapsulation of the
device needs to be considered. Third, the complexity of the
device array inevitably increases with the increased number of
sensory units. Therefore, constructing highly integrated array
without increasing the complexity is an important task for NTS
applications. Although the integration level of the demonstrated
NTSs is still far below the biologically counterparts, it is highly
required to take the first step toward high-density and robust
interactive neuromorphic devices.
Bioinspired neuromorphic visual system
Human retina is composed of countlessly and intricately
arranged photoreceptor cells and protrusions, which are con-
nected to the visual center of the brain through nerve fibers to
form the human vision system (Fig. 7a) [9,114]. The essential fea-
ture of retina-inspired neuromorphic visual device is that the
synaptic weight (conductivity) can vary or even be preserved in
response to the incident light signal [115–118]. Early strategy
to realizing visual perception is commonly relying on the simple
integration of photodetector and nonvolatile memory [27,112].
In recent years, machine vision technology has been rapidly
developed for autonomous vehicles and robots. In principle,
images (composed of pixels) are first captured by cameras with
active pixel sensors, then converted from optical to digital for-
mat, and finally processed using machine learning algorithms
(e.g., ANN, deep convolutional neural network (CNN), and rein-
forcement learning algorithms). However, this technology has
encountered several intractable problems during its develop-
ment: (i) images captured by camera generate a large amount
of redundant data; (ii) there are efficiency bottlenecks in convert-
ing data from optical to electrical domain; (iii) data exchange
between sensing and processing units results in latency power
consumption; and (iv) complex images require incompatible pre-
processing. Hence, simulating the neurobiological structure and
the function of retina, developing photodetectors with memory
functions, and attempting to directly modulate synaptic weights
with light signals are expected to help solve these problems and
provide a promising approach to visual sensing [11]. Such synap-
tic devices are usually required to have a persistent photoconduc-
tive (PPC) effect [119], i.e., where the conductance can be
maintained for a long time after removing the light stimulus.
Two main strategies based on the PPC effect have been proposed
for neuromorphic visual devices. One approach is to directly uti-
lize the intrinsic photosensitive memory properties of the mate-
rial itself, and the other approach is to use a stacking strategy to
indirectly confine photogenerated electrons/holes through
heterostructure formed by stacking wide/narrow bandgap mate-
rials [119,120]. Inspired by human vision system, the neuromor-
phic visual systems based on low-dimensional materials (0D
[40,121], 1D [9,122–125], 2D [126–128], and heterostructures
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
[12,129]), inorganic bulk materials (amorphous oxide semicon-
ductor [7,8,130], molybdenum oxide (MoOx) [131], etc.), and
organic semiconductors [132] have been intensively investigated
(Fig. 7b, Table 2). For neuromorphic computing, recognition
accuracy and efficiency are highly dependent on the linearity/
symmetry of weight-updating curves and the number of effective
conductance states [133]. Fig. 7c depicts the weight-updating
mechanism for ANN simulation based on potentiation/depres-
sion (P/D) curves. The device conductance is in function of the
pulse number (both positive and negative stimuli pulses). In
the ideal case (dashed line in Fig. 7c), the conductance increases
linearly with positive pulses and decreases linearly with negative
pulses. However, most synaptic devices commonly exhibit asym-
metric and nonlinear behaviors (where the conductance changes
sharply and reaches a saturation sate) [33]. Simulations are usu-
ally performed based on a two-layer ANN using standard gradient
descent techniques (e.g., the backpropagation algorithm,
Fig. 7d). Based on the photosensitive properties of the above
materials (or structures), it is facile to utilize the photoconductive
effects to simulate the function of photonic synapses, which
have shown great potentials in image sensing and processing
[131], visual assisted learning, color recognition, photoelectric
logic operation, and bionic optoelectronic somatosensory sys-
tems (Fig. 7f) [12,112,128,131,134,135].
Low-dimensional materials/structures for neuromorphic visual
system
0D materials
0D materials are a class of nanomaterials with internal electron
motion confined in all directions, exhibiting many unique phys-
ical and chemical properties due to the significant quantum con-
finement effect. The optical characteristics of 0D materials are
suitable for implementing neuromorphic visual system [136].
Related photonic devices enable fast-response parallel communi-
cation and hyper-connectivity due to the transmission of pho-
tons without the spatial and power density limitations caused
by wiring in electronic circuits. Among various 0D materials, per-
ovskite quantum dots (QDs) have narrow exciton binding
energy, excellent absorption properties, and long charge carrier
lifetime, which makes them (and related heterostructures) as
potential candidates for excellent photosensitive materials. A
photonic flash memory based on all-inorganic CsPbBr3 per-
ovskite QDs is fabricated to simulate synaptic functions [40].
The heterostructure formed between the CsPbBr3 QDs and the
semiconductor layer is the basis for the optically programmable
and electrically erasable characteristics of the memory device.
This mechanism can be used to simulate typical synaptic func-
tions of STP, LTP, and STDP at the device level. Based on the pho-
tonic enhancement and electrical habituation, the synaptic
weight exhibits multi-wavelength responsive characteristics.
These results have laid the foundation for future developments
of perovskite-type memories and synaptic devices with diversi-
fied plasticization means and sophisticated computation
capacities.

Silicon nanocrystals are also widely used to fabricate synaptic
devices, which enable the synaptic responses to light stimuli over
a wide spectral range from ultraviolet to near-infrared [121]. The
available synaptic plasticity of silicon nanocrystal-based synaptic
13
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FIGURE 7

Bioinspired neuromorphic visual system. (a) Schematic diagram of biological vision system. (b) Schematic diagram of neuromorphic visual system. (c)
Potentiation/depression (P/D) curve for ANN simulation. (d) A two-layer ANN model for supervised learning. (e) An ANN photodiode array for sensing and
processing optical images. (f) Applications of neuromorphic visual system.
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devices is attributed to the dynamic capture/release of photogen-
erated carriers at the defect sites, e.g., dangling bonds on the
nanocrystal surface. Intensive research on silicon nanocrystals
in low-energy broadband photonic synaptic devices are of great
significance to the large-scale deployment of conventional sili-
con materials in the emerging neuromorphic computing.

1D materials
1D material is a type of nanomaterial in which electrons are free
to move in only one nanoscale direction. One of the most widely
studied 1D materials is carbon nanotubes (CNTs), which are
formed by convolving graphene sheet layers with metallic (or
semiconducting) behaviors depending on its chiral vector. It
has high charge carrier mobility with excellent physical and
chemical stability, and is widely used as the channel materials
14
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for three-terminal transistors [137–139]. Floating-gate synaptic
transistors based on semiconducting CNTs can provide adjusta-
ble weight-updating linearity and variation margin, representing
great potential to enable pattern recognition from the device-to-
system level [10]. Meanwhile, combining CNTs with photosensi-
tive semiconductor materials can be readily used to simulate
optical synaptic behaviors. For example, Zhu et al. report a
1024-pixel flexible photosensor array based on CNTs/perovskite
QDs as the active materials, in which a built-in electric field is
formed at the interface to equilibrate the Fermi levels and plays
a key role in the separation of photogenerated carriers. The
demonstrated photosensitive device exhibits ultra-sensitivity
and ultrahigh specific detectability for visible light. It can also
directly respond to optical stimuli and perform optically tunable
synaptic plasticity for preprocessing of visual information,
16/j.mattod.2022.09.012
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TABLE 2

Summary of bioinspired neuromorphic visual system (NVS).

AVS structure Material property Photosensitive
material

Device
structure

Stimulus
signals

Synaptic
behavior

Applications Refs.

0D material-NVS Narrow exciton binding
energy;
Excellent absorption
properties;
Long charge carrier
lifetime

CsPbBr3 QD FGFET Electro-
optical

STP/LTP,
PPF/D,
SRDP

- [40]

Cs2AgBiBr6 QD FGFET Pressure-
optical

PPF, LTP/D Multisensory integration [171]

Si Nanocrystal 2-terminal Optical STP to LTP/
STDP

- [121]

1D material-NVS Ultrahigh surface-to-
volume ratio;
Mechanical flexibility;
Process scalability;
Device miniaturization

CNT/CsPbBr3 QD FET Optical PPF, STP to
LTP

Reinforcement learning [122]

TiO2 nanowire Memristor Optical STDP - [123]
ZnO nanorod Memristor Optical EPSC, PPF,

STP
- [124]

ZnO nanowire FGFET Optical E/IPSP, PPF,
STDP

Pattern recognition [186]

InGaO3(ZnO)3
superlattice nanowire

FET Optical PPF, STDP Orientation selectivity,
image memorizing

[125]

FAPbI3 nanowire 2-terminal Optical - Image sensing [9]

2D material-NVS Compatible with planar
wafer technology;
Excellent electrostatic
tunability;
Large on/off ratios for
TMDC;
Ultrathin body and
unique band structures;
High thermal stability;
Controllability of the
synaptic weights
Unique optical
characteristics;
Broad spectral range

W/MoS2/p-Si Memristor Electro-
optical

E/IPSP, STP
to LTP

Photonic potentiation,
electric habituation

[126]

MoS2 EGFET Electro-
optical

LTP/D,
STDP

Pavlovian conditioning [127]

WSe2 Photodiode
array

Optical - Image recognition and
encoding

[11]

ReS2 Memristor Optical EPSC, PPF,
LTP

Training, recognition
and inference

[119]

MoSSe FGFET Electro-
optical

PPF, STP,
LTP/D,
SNDP

Image pre-processing
and recognition

[187]

BP - Optical E/IPSC, PPF,
STDP

Optical logic operation [128]

Heterostructure-
NVS

Stackable and
designable;
Heterogeneous
integration;
Expandable to other
materials;
Excellent
optoelectronic
performance;
PPC effect

Graphene/CNT FET Optical STP/LTP Optical logic operation [157]
CsPbBr3 QD/MoS2 EGFET Electro-

optical
PPF, STM/
LTM

Conditioning, neural
coding

[188]

WSe2/h-BN/Al2O3 FET Optical - Image sensing and
processing.

[129,189]

BP/Al2O3/WSe2/h-BN FET Optical - Motion detection and
recognition

[190]

h-BN/WSe2 FET Optical LTP/LTD,
STDP

Color recognition [12]

MoS2/pV3D3 Phototransistor Electro-
optical

STP/LTP Image acquisition, pre-
processing

[191]

Graphdiyne/graphene Transistor Electro-
optical

E/IPSC,
LTP/D

Logic operation, image
distinction

[192]

MoSe2/Bi2Se3 RRAM Electro-
optical

STP, LTP,
PPF/D

Visual information
storage

[43]

Graphene/MoS2 FET Tactile-
optical

LTD Image recognition [13]

PdSe2/MoTe2 FET Optical - Broadband sensing and
convolutional
processing

[158]

Oxide-NVS High mobility;
Large bandgap;
Optical transparency;
Low temperature
synthesis;
Excellent large-area
uniformity;
Adjustable
composition

IGZO-alkylated GO FET Electro-
optical

LTP/D Image recognition [8]

IZO, ISZO, ISO, IZO FET Optical S/LTP,
STDP, PPF

- [7]

SnO2 FET Electro-
optical

PPF/pain
perception

Optical logic operation [193]

ITO/In-TiO2/Au Memristor Optical EPSP/IPSP Sensorimotor [135]
ITO/MoOx/Pd RRAM Optica STP to LTP Image recognition [131]
ITO/HfOx/TiN Memristor Electro- LTP/D Image filter [194]

(continued on next page)
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TABLE 2 (CONTINUED)

AVS structure Material property Photosensitive
material

Device
structure

Stimulus
signals

Synaptic
behavior

Applications Refs.

optical
ZnO/ATO/FTO Memristor Optical - Photonic nociceptor [130]
ITO/ZnO/Nb-STO Photomemristor Pressure-

optical
- Motion/handwritten

detection
[195]

PCM-NVS Non-volatile,
reproducibility and
stability

Ge2Sb2Te5/Si3N4 Photonic
memory

Optical - Optical logic operation [134]

Organic-NVS Flexible;
Low Cost;
adaptable by chemical
design;
Compatible with large-
area printing methods

Organic molecular Phototransistor Optical STP/LTP,
STDP

Visual perception [132]

IDTBT: PCBM Phototransistor Electro-
optical

E/IPSC,
PPF/D, S/
LTP

Image recognition [196]

PTCDI-C8/VOPc FeFET Optical STP/LTP Color recognition [27]
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exhibiting great potential as a neuromorphic visual system. All
the demonstrations provide impetus for the development of sim-
ulated neuromorphic visual systems to mimic the flexibility,
complexity, and adaptability of biological visual systems [122].

Semiconductor nanowires/nanorods constitute another large
category of 1D materials [136]. Nanowires with fine morphology
and uniform diameter are usually grown via a bottom-up vapor–
liquid-solid (VLS) method. The prepared nanowires can be trans-
ferred to any substrate (e.g., flexible substrates) by a mature pro-
cess with good compatibility between the target substrate and
the nanowire growth process [125]. In addition, nanowires/-
nanorods have excellent photoresponsive properties superior to
conventional photonic materials because of the ultra-high
surface-to-volume ratio of the 1D morphology [140]. A series of
semiconductor nanowires/nanorods (e.g., TiO2 nanowires
[123], ZnO nanorods/nanowires [124], InGaO3(ZnO)3 superlat-
tice nanowires [125]) has been successfully used in neuromor-
phic visual devices. The demonstrated enhancement of
learning behaviors depends on the temporal correlation and
the number of light pulse stimuli, which is consistent with the
spike-time-dependent plasticity. The working mechanism can
be attributed to the adsorption-dissociation kinetic behaviors of
oxygen molecules on the nanowire surface, similar with the
Ca2+ flow and neurotransmitter release kinetics in biological
synapses. To achieve a more realistic visual system, Gu et al. con-
struct a spherical bionic electrochemical eye (EC-EYE) with a lar-
ger viewing angle compared to planar-type optic [9]. Perovskite
nanowires are used to mimic human eye's optic rod cells, and
high-density nanowire arrays grown via a vapor-phase approach
are assembled in a hemispherical porous transparent insulating
template to mimic the human retina. The ionic liquid electrolyte
is used as the front contact of the nanowire, while the liquid
metal wires are used as the back contact of the nanowire photo-
sensors, mimicking the human nerve fibers behind the retina.
EC-EYE has exhibited high responsiveness, reasonable response
rate, low detection limit, and wide field of view. In addition to
being structurally similar to the human eye, the nanowires used
in the hemispherical artificial retina have much higher density
16
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than the photoreceptors of the human retina, allowing higher
imaging resolution by implementing a proper contact strategy.
2D materials
2D materials with the unique 2D structure exhibit many surpris-
ing and peculiar properties because the motion of free electrons
in 2D materials is only in two dimensions. Compared to 0D
and 1D materials, 2D materials offer better device scaling and
integration with existing planar wafer technologies [136]. Fol-
lowing the discovery of graphene in 2004, other 2D materials
(particularly TMDs) have become the hotspot in scientific
research [141]. Each layer in 2D materials is connected by cova-
lent bonds, with no dangling bonds on the surface and weak
vdW forces between the neighboring layers [142]. Benefiting
from this unique layer structure, electrons can be confined in
the ultrathin body of the 2D semiconductor and precisely tuned
by the electric field [143]. Single layer or few layers 2D materials
can be easily exfoliated off from the bulk 2D crystal. However,
the shape, size, and thickness of the 2D material flakes obtained
via top-down mechanical exfoliation approach are non-uniform,
which makes the further scaling at macroscopic scale remain a
challenge [144]. Recently, using improved exfoliation process
through interfacial interactions, e.g., gold-assisted exfoliation
[145], is expected to overcome this challenge. In contrast, the
bottom-up chemical vapor deposition approach is more advanta-
geous in growing monolayers 2D materials [146]. Among the
family of 2D materials, graphene has the advantage of high car-
rier mobility but poor photosensitivity; TMDCs (e.g., MoS2,
WSe2, ReS2) have strong visible light absorption due to their wide
band gap. BP has a high hole mobility (�103 cm2 V�1 s�1), highly
anisotropy, a thickness-tunable band gap ranging from 0.3 to
2 eV, strong light-matter coupling, and a wide spectral range
from deep ultraviolet to infrared waves, but poor air stability
[147–150]. Monolayer MoS2 is a direct bandgap semiconductor
with high absorption coefficients and efficient electron-hole pair
generation under light excitation, which is highly suitable for
applications in optoelectronic devices due to the quantum
mechanical constraints [151]. On this basis, a photon-
16/j.mattod.2022.09.012
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enhanced memristive device based on a monolayer MoS2 is suc-
cessfully fabricated [126]. Basic characteristics of photonic
synapse are demonstrated based on the inherent persistent pho-
toconductivity and volatile resistive switching behavior of MoS2
[126,127]. Based on the inherent light-sensitive memory proper-
ties of ReS2, it is able to modulate the synaptic weights via light
stimuli, thus mimicking the dynamics of biological synapses,
e.g., excitatory post-synaptic current (EPSC), PPF, and LTP
[119]. BP-based three-terminal optical synaptic devices have also
been used to simulate the process of learning and forgetting
behaviors, also exhibiting excellent performance in optoelec-
tronic logic operations [128]. The bioinspired vision sensors
based on MoS2 phototransistors can achieve dynamic modula-
tion of the photosensitivity under different illumination condi-
tions, which can be used to emulate adaptive artificial retina.
This MoS2 phototransistor array exhibits both scotopic and pho-
topic adaptation, providing a wide perceptual range and
enhanced image contrast [14]. Another image sensor array based
onWSe2 photodiodes has also been demonstrated by building an
ANN for sensing and processing the images projected on the
photonic sensory array. The photosensitivity of each photodiode
can be readily tuned by the gate voltage, which is critical to real-
ize modulation on connection weight in ANN and implementa-
tion of simple computational tasks (Fig. 7e) [11].

Heterostructures
Among the active materials for photonic synapses, binary or
heterostructures constructed by 2D materials [73,74,152–155]
offer distinctive advantages of high photocurrent, excellent
quantum efficiency, and ultra-fast photoresponse. Van der Waals
heterostructures with defect-free interfaces [156] can maintain
high electron mobility and exhibit typical photoresponsive char-
acteristics according to the gate tunable charge transfer/ex-
change between layers. For example, STP behavior can be
achieved by charge transfer between graphene and SWCNT
heterostructure, which is not observed in pure CNT devices
[157]. Moreover, due to the presence of charge traps between
the heterostructure and the substrate interfaces, the heterostruc-
ture synapses are non-volatile with gate-controlled PPC effects,
exhibiting a well-mimicked LTP behaviour [157]. Based on the
gate tunable photoresponse of BN/WSe2 heterostructures, the
neurobiological functions of retinal cells have been successfully
emulated [12,129]. Base on a neuromorphic visual system con-
structed in a matriX array, simultaneous image recognition and
processing can be realized by the reconfigurable vision sensor
by adjusting the gate voltage applied on each pixel. The demon-
strated vision sensor offers a reliable prototype to endow visual
neural networks with convolutional computation capabilities
[129]. After an in-depth study of the synaptic behaviors by
means of machine learning, an artificial visual neural network
based on the BN/WSe2 vdW heterostructure is also constructed
to simulate the color recognition function of human visual sys-
tem (similar to the color blindness test) [12]. Optoelectronic
synaptic devices that combine photons and electrons have
promising applications in interactive neuromorphic devices to
mimic the retina. However, existing neuromorphic visual sys-
tems are limited by the requirement of electrical stimulation to
implement bidirectional synaptic weight updating. Hou et al.
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
report a flexible wafer-scale two-terminal all-optical modulated
synaptic device. Based on pyrenyl graphdiyne (Pyr-GDY)/
graphene/PbS quantum dots heterostructures, the device can
simulate both excitatory and inhibitory synaptic behaviors in
optical circuits. Additionally, the device has exhibited a series
of logical functions and associative learning capabilities, which
may significantly enhance the information processing capabili-
ties of neuromorphic visual system [133]. Recently, Pi et al.
demonstrates the possibility of band alignment between type-II
and type-III heterostructures (e.g., palladium diselenide (PdSe2)/
MoS2 heterostructures) for neuromorphic vision applications.
The type-II and type-III heterostructures have a gate-tunable pos-
itive and negative photoresponse, as well as a broadband linear
gate-dependence photoresponsivity, which allows different
types of convolutional processing for remote image sensing.
Compared with conventional single-band-based convolutional
neural networks, this device is able to provide both broadband
image sensing and convolutional processing to improve the
recognition accuracy of multi-band images [158].

Inorganic materials/structures for neuromorphic visual system
It has become a major research direction to seeking efficient
materials suitable for photonic neuromorphic devices to simulate
the behavior of photo-synapses and construct interactive neuro-
morphic visual systems. Based on the inherent PPC of some
materials, the function of photonic synapses can be successfully
emulated. Amorphous oxide semiconductors, represented by
indium-gallium-zinc oxide (IGZO) [8] and indium-zinc oxide
(IZO) [7], have the advantages of high mobility, large bandgap,
good optical transparency, and excellent large-area uniformity.
The effects of ionized oxygen vacancies on the generation/relax-
ation of photogenerated carriers can be used to emulate the typ-
ical behaviors of photonic synapses (e.g., STP/LTP, time-
dependent plasticity, and PPF). Two-terminal synaptic device
based on Pd/MoOx/ITO (ITO is indium tin oxide) has been fabri-
cated for ultraviolet sensing and demonstrated as light-triggered
nonvolatile switch and light-tunable artificial synapse [131].
Relying on the stable switching between high and low resistance
states, the prepared photonic synaptic array can further imple-
ment the functions of image recognition/memory and neuro-
morphic visual preprocessing, which significantly helps to
improve the processing efficiency and image recognition rate
for postprocessing tasks.

Organic materials/structures for neuromorphic visual system
Organic materials are flexible, adaptable by chemical design
[48,54], and compatible with large-area printing methods
[31,96]. In OFET, the interface effect (between the semiconduc-
tor channel and dielectrics) has significant influences on device
photosensitive properties, which can be used to simulate the
behaviors of photonic synapses [132,159]. In particular, OFETs
have shown signal additive properties caused by repetitive light
pulses, which are suitable for light-stimulated artificial synapses.
However, the high operating voltage of conventional OFETs
results in high energy consumption and hinders their further
applications in neuromorphic visual system. To solve this prob-
lem, Shi et al. report an all-solution-printed OFET array for neu-
romorphic visual system with ultra-low energy consumption of
17
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0.07–34 fJ per spike. By introducing a Schottky barrier at the
source-semiconductor contact, the charge carrier injection can
be readily tuned to allow the OFET to operate under a low driving
voltage, thereby reducing its power dissipation. Furthermore, an
artificial visual neural network based on the 8 � 8 OFET arrays
has also been demonstrated on a flexible substrate, exhibiting
excellent performances on low-power-consuming image recogni-
tion/enhancement. This work has opened up the path toward
ultralow-energy-consuming organic neuromorphic visual sys-
tems [160].

Light stimulation of synaptic devices is critical to the develop-
ment of neuromorphic computing with wide bandwidth and
high-efficiency communications. Various modes of light signals
can activate the photodetector to generate voltage pulses, which
are generally applied as the presynaptic spikes to trigger EPSC in
the synaptic devices. Corresponding postsynaptic responses can
be used to simulate the function of human eyes for visual aided
learning and color recognition [12]. The synaptic responses con-
taining spatio-temporal information can also be delivered to tar-
get effectors (the reflection of the muscle [112] or the light
interactive actuator [135]). For example, a photo-interactive arti-
ficial neuromuscular system is constructed to simulate the neuro-
muscular function, which utilizes optoelectronic organic
synapses as the photodetector and stretchable organic nanowires
as the actuator. The voltage pulses produced from the self-
powered photodetectors (triggered by light signals) can be used
to drive the integrated organic synaptic transistors. After recogni-
tive processing, the obtained synaptic output information can be
used for human–machine interaction. Besides, optical wireless
communication of the interface can be used for optical actuation
of artificial muscles. In another typical example, optical inor-
ganic synapses (indium-doped TiO2 nano-film) are activated to
stimulate the liquid–metal-based actuators [135]. The optoelec-
tronic synapses can produce excitatory and inhibitory postsy-
naptic signals to trigger the vibration behaviors of liquid metal
droplets, thus simulating the expansion and contraction of bio-
logical muscle fibers. This new artificial optoelectronic sensory
system is highly promising for potential light-excitation
response in biological motion systems.
Bioinspired neuromorphic auditory system
As an auditory organ, the ear perceives and distinguishes the
characteristics of sound when it receives sound waves (Fig. 8a).
The brain can help to analyze the location of sound by interaural
time difference (ITD, Fig. 8b). ITD refers to the time difference
when the sound wave reaches the left and right ear due to the
distance between the two ears, which is the most important clue
of sound location. Based on the capacity of precise spike timing,
a spatiotemporal neural network based on resistive switching
neuromorphic auditory system (NAS) is constructed to mimic
the function of sound azimuth detection by human brain
[161]. By detecting the ITD with suppressed synaptic-weight
dependence on sound amplitude/frequency, the sound localiza-
tion can be realized based on a designed circuit with
excitatory/inhibitory-adjustable synaptic devices (Fig. 8c) [162].
Assisted with resistive channel and capacitive gate, an artificial
time-delay neuron based on MoS2 FET is fabricated to simulate
18
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a limited axonal conduction velocity, which is very important
for translating the ITDs into a spatial computational map [163].
A hybrid synaptic transistor based on WSe2 and MoS2 vdW
heterostructure is also designed to selectively potentiate and
depress the channel conductance for acoustic pattern recogni-
tion assisted with ANN simulation (Fig. 8d) [164]. The above
results show that based on the excitatory/inhibitory characteris-
tics of NAS and combined with suitable neural circuits or algo-
rithms followed by recognition, it is possible to achieve real-
time speech biometrics, sound localization, and precise synaptic
information processing functions [161–167].
Bioinspired neuromorphic multisensory system
In order to achieve sophisticated and precise operations, robots
are usually equipped with a variety of sensors. Usually, different
types of sensors sense external signals independently and con-
vert them into electrical signals, which are further encoded and
transmitted. This approach generally enables the processing of
asynchronous temporal information, but has difficulty in han-
dling more complex information, which severely degrades the
intelligence of the system [168]. Therefore, parallel processing
of sensory signals is of crucial importance in the novel comput-
ing paradigm. It remains a challenge to perform real-time parallel
processing of external sensory information transmitted by multi-
ple sensory neurons and respond independently to the inte-
grated sensing information through artificial efferent nerves
[169]. The following strategies can be implemented to integrate
different neuromorphic devices into a single system. One typical
strategy is data fusion, e.g., visual-tactile fusion [13,170,171],
tactile-olfactory fusion [172], and multisensory fusion [5]. Joint
sparse coding and deep learning provide effective methods for
multimodal fusion and feature extraction [173]. Pre-processing
different data with the help of algorithms and other means can
solve the problems of data type, dimensionality, and sparsity
mismatch [170]. Multimodal fusion strategies have been shown
to improve the recognition accuracy and have potential applica-
tions in disaster response [172]. However, this approach is lim-
ited by the size of the sensor to be further integrated, which is
too bulky and rigid to form intimate contact with the user for
high-quality data acquisition [170]. Another approach is to use
the intrinsic properties of functional materials, such as piezoelec-
tric properties, optoelectronic properties, temperature and
humidity sensing properties, chemical sensing properties, etc.
2D materials are one of the promising materials (especially in
optoelectronic properties with high sensitivity and good reliabil-
ity), allowing to maintain the high quality of sensing signals and
simplify the complexity of system integration [13].
Bioinspired neuromorphic tactile-visual system
Associate analysis of biological mechanical motions and visual
information is a fundamental perceptual and cognitive ability
of human brain, which is of great significance in acquiring
somatosensory and visual data to simulate artificial intelligence
(Fig. 9a) [152,170]. Therefore, it is very important to achieve mul-
timodal plasticity of interactive neuromorphic devices by updat-
ing synaptic weights through the mechanical-optical synergistic
effect.
16/j.mattod.2022.09.012
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FIGURE 8

Bioinspired neuromorphic auditory system. (a) Biological auditory system. (b) Schematic diagram of interaural time difference (ITD). (c) Working mechanism
of synaptic computation for ITD-based sound localization. (d) Acoustic pattern recognition by hybrid synaptic transistor based on vdW heterostructures.
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As is known, over-reliance on vision can be problematic. In
dynamic environments, factors such as optical occlusion and
dark scenes often severely affect the accuracy of image recogni-
tion [170,172]. In the absence of continuous line-of-sight, only
vision information may make it difficult to achieve manual dex-
terity in robotic operations, e.g., searching for wreckage in disas-
ter response [93]. To improve recognition accuracy, visual data
can be combined with other types of information date captured
from different sensors for data fusion [168,173]. For instance, the
tactile mode is used for local information and the vision mode is
to provide the global picture [173]. The earliest attempts to fuse
vision and tactile to recognize/represent objects can be dated
back to the 1980s [174]. Tactile sensing aiding visual sensors is
able to extract more features to improve the performance of
object recognition [175], object reconstruction [176], and grasp-
ing [177,178], providing local and detailed information [179] to
deliver related knowledge with vision [173].
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
Visual and tactile modes are different in format, frequency,
and information range. In addition, certain features can only
be acquired through a single sensory mode. For example, the
color of an object can only be obtained visually, while the tex-
ture, hardness, and temperature of a surface can be obtained
through tactile sensing. Asynchronous information obtained
from two modes and different sensing ranges poses a great chal-
lenge for multimodal fusion [168]. Chen’s group has developed
an artificial sensory neuron with visual-haptic fusion [180],
where photodetectors and pressure sensors can convert external
tactile and visual stimuli into electrical signals, respectively. The
electrical signals from these two sensors are then transmitted via
ionic cables to synaptic transistors for integration and conver-
sion into EPSC. Based on the PPF effect, successive stimuli cause
an increase in EPSC spikes, which can be used to determine the
degree of synchronization between the two spikes. Conducting
this process in turn can help to provide multidimensional spatial
19
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FIGURE 9

Bioinspired neuromorphic multisensory system. (a) Biological tactile-visual system. (b) Bioinspired data fusion architecture. (c) Bioinspired mechano-photonic
artificial synapse. Schematic of (d) the human and (e) artificial multisensory neural network.
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information to control neuromuscular junction or a robotic
hand for action perception, processing, and feedback. This group
has also developed a bioinspired data fusion architecture (Fig. 9b)
[170], which can realize gesture recognition by integrating visual
data and somatosensory data (obtained from a stretchable strain
sensor based on single-walled CNTs). The architecture uses con-
volution neural network for visual information processing, and
then uses sparse neural network at the feature layer for fusion
and recognition of somatosensory data. The fusion architecture
20
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maintains recognition accuracy under non-ideal conditions of
noisy and under-/over-exposed images.

Another strategy to neuromorphic tactile-visual system is to
embody the intrinsic photosensitive properties of the material
to reduce the integration of the system. As mentioned above,
the vdW heterostructures formed by stacking different 2D mate-
rials have rich electronic and optoelectronic properties [142].
These properties can be used to simulate the function of retinal
neurons or construct a neuromorphic visual system based on
16/j.mattod.2022.09.012
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the intrinsic photosensitive properties. By combining graphene
and MoS2, the heterostructure with excellent optical sensing
properties can be constructed. Such heterostructures with high
photoelectric detection sensitivity and continuous gate-
adjustable photoconductivity are prerequisites for the integra-
tion with artificial synapses in different modalities [73,74,155].
By combining tribotronic gating with photoconductive effects
of photonic synapses, one can use an active and direct way to
simulating the synaptic plasticity and multimodal neural func-
tions. Sun’s group [13] has introduced a bioinspired mechano-
photonic artificial synapse with synergistic mechanical and opti-
cal plasticity, which consists of a graphene/MoS2 heterostructure
based phototransistor and an integrated TENG (Fig. 9c). A tun-
able photoresponse related to mechanical displacement is real-
ized by controlling the charge transfer/exchange in the
heterostructure with triboelectric potential. Based on the simula-
tion of artificial neural network, it is proved that the image recog-
nition rate is improved to 92 % assisted with mechanical
plasticization. The artificial multisensory integration nervous
system [171] based on the integration of a flexible TENG and a
FGFET with Cs2AgBiBr6 QDs also coincides with this strategy.
Based on this design, a 3 � 3 pixel array of artificial photosynap-
tic circuits driven by TENG is also developed and demonstrated
with superiority of multisensory integration. Multisensory inte-
gration can effectively enhance the signal-to-noise ratio of
images, improve image quality, and enhance the accuracy of pat-
tern recognition, providing an efficient methodology in realizing
mixed mode interactions, simulating complex biological neural
systems, and facilitating the development of interactive artificial
intelligence.

Bioinspired neuromorphic tactile-olfactory system
In addition to vision, the tactile and olfactory perception are
other two key natural abilities that animals have evolved.
Inspired by star-nosed moles, a star-nose-like tactile-olfactory
sensing system is mounted on a robotic hand [172] to demon-
strate tenacious object recognition in the presence of interfer-
ence. The flexible sensing array on the robotic hand adopts
silicon-based force and gas sensors with high sensitivity and sta-
bility to obtain reliable tactile and olfactory information by
touching objects. With the help of machine learning, key fea-
tures about the local topography, material stiffness, and odor
of the tested object can be extracted. In this work, CNN and fully
connected networks are used for early tactile and olfactory infor-
mation processing, which resembles the function of the local
receptive fields of the biological nervous system and mimics
the initial processing of tactile and olfactory information in pri-
mary area (PA). Besides, fully connected networks can be used to
extract features from the raw information and deliver pre-
decisions on the output weights of tactile and olfactory informa-
tion based on the surrounding environment, which realize the
mimicking of signals interactions in the biological nervous sys-
tem association area (AA). Based on the fully connected networks
for multisensory fusion of tactile and olfactory information (sim-
ilar with the biological information fusion process), the system
can achieve the functions of object classification (96.9 % accu-
racy), human body recognition (>80 % accuracy) despite gas
interference, object burial, damaged sensors, and hazardous situ-
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ations of rescue missions. Compared to vision, the tactile-
olfactory fusion strategy offers a possibility in dark or obstructed
spaces and has a relatively small input data size, leading to smal-
ler requirements for computational resources and faster recogni-
tion, which is crucial in rescue missions.
Other neuromorphic multisensory system
Since the world is multimodally interconnected, people learn
and adapt to the ambient environment by sensing, interpreting,
and most importantly, associating and learning from multi-
modal information from the environment. The integration and
interaction of vision, touch, hearing, smell, and taste in human
multisensory neural networks facilitates higher cognitive func-
tions such as cross-modal integration, recognition, and imagery
to accurately assess and fully understand the multimodal world.
To make robots perceive more like humans, artificial multisen-
sory systems with advanced cognitive sensing and multimodal
environmental information processing functions are urgently
needed. By integrating multisensory subsystems (including artifi-
cial vision, touch, hearing, smell, and taste sensors) and neural
networks for multisensory data fusion, cross-modal learning
can be readily achieved (Fig. 9d). In this process, distributed sen-
sors are used to detect multimodal physical stimuli and convert
the information into potential changes; spike encoders are used
to encode potential changes into optical spikes; photomemris-
tors are used to decode, filter, and memorize this information;
and ANNs are used to correlate and learn the cross-modal signals.
Ultimately, the perception, encoding, transmission, decoding,
filtering, memory, and recognition functions of multimodal
information are achieved, and it is also possible to fuse multisen-
sory data at the hardware and software levels. Using cross-modal
learning, the system is capable of cross-modal recognition and
imaging the multimodal information, such as visualizing letters
during handwritten input, recognizing multimodal visual/
smell/taste information, or imaging never-before-seen pictures
when hearing their description. Multisensory neural networks
offer a promising approach to robotic sensing and perception [5].
Summary and perspectives
In summary, we have reviewed the recent progress on bioin-
spired interactive neuromorphic devices, classified as neuromor-
phic tactile systems, neuromorphic visual systems,
neuromorphic auditory systems, and neuromorphic multisen-
sory system. We discuss the interactive neuromorphic devices
from the aspects of materials, device architectures, operating
mechanisms, and potential applications. Multifunction-fused
interactive neuromorphic devices are then proposed with
promising multiple/mixed synaptic plasticity to address more
realistic problems. In addition, we discuss the pros and cons
regarding to the computing neurons and integrating sensory
neurons (Table 3). The perspectives on bioinspired interactive
neuromorphic devices are finally summarized at the material,
device, network, and system levels. Computing neurons rely on
centralized and sequential processing determined by clocks and
perform high speed and accuracy for well-defined problems
and repeated tasks [5,181]. Usually, external sensors are used to
capture analog signals and convert them to digital format for
21
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TABLE 3

The pros. and cons. about computing neurons and integrating sensory neurons.

Computing neurons Integrating sensory neurons

Pros. Centralized and sequential processing [181]
High speed and accuracy for well-defined problems [181]
The external sensor captures the analog signal and converts it to digital
format for processing using algorithms [182]
Better integration with CMOS [183]

Distributed, parallel, and event-driven [181]
Handle complex real-world problems (e.g., visual and speech
recognition and motion control) [31]
In-sensor computing with higher efficiency [3,31]
Real-time sensing and processing with low latency [11]
Optional connection to neural engineering counterparts for real-
time sensing, processing and feedback [169]
Simplify circuit and algorithm complexity [14]

Cons. Time-consuming data conversion (e.g., optical image to electrical domain
conversion) [131]
Data redundancy, low efficiency, and high-power consumption [11]
Complex circuits and algorithms [14]

Compatibility of sensors with synaptic devices
Signal decoupling, signal interference
High difficulty of on-chip integration
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processing using algorithms [182]. To implement this task, cur-
rent systems use circuits and algorithms that compromise effi-
ciency and increase complexity [14]. Data conversion is time-
consuming and laborious (e.g., optical image to electrical domain
conversion) and the data captured is large and redundant, which
results in low computing efficiency and high-power consump-
tion [131]. As these functions are implemented on the basis of sil-
icon logic circuits, they are compatible with the existing
infrastructure of silicon wafer technology [183]. In contrast, sens-
ing units, neurons, and synapses in integrating sensory neurons
process information based on distributed, parallel, and event-
driven computation [181]. In-sensor computing with higher effi-
ciency allows for the capture of large amount of data and per-
forms low-latency real-time sensing and in-situ processing of
the captured data, reducing the complexity of circuits and algo-
rithms [3,11,14,31]. There is also the option to connect with neu-
ral engineering counterparts (e.g., artificial muscles, actuators,
feedback devices) to realize the function of real-time sensing,
processing, and feedback [169]. Through the combination of var-
ious sensors and synaptic devices, the bioinspired interactive
neuromorphic devices provide solutions to next generation of
sensing and computing different types of signals in large num-
ber. Neuromorphic tactile systems, neuromorphic visual systems,
neuromorphic tactile-visual systems, and neuromorphic audi-
tory systems have been successfully investigated in previous
reports. However, research on interactive neuromorphic devices
that utilize sensing and synaptic devices for perception and com-
putation is just beginning and has a long way to go. Compatibil-
ity issues between sensors and synaptic devices, signal
decoupling for multi-sensing coupling, interference, and
on-chip integration need to be addressed urgently. Optimized
sensors, neuromorphic devices, and hardware integrations with
compatible algorithms are highly required. Fig. 10 shows a road-
map for the future development of bioinspired interactive neuro-
morphic devices, which is discussed from the prospects of
interactive neuromorphic devices at the material, device, net-
work, and system levels, respectively.

Materials
At the material level, there are mainly-two research directions.
One is to explore growth conditions and modification processes
22
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to improve the physical properties and interface quality of mate-
rials, and the other is to explore new materials with unique prop-
erties. Besides, the preparation of large-scale homogeneous novel
nanomaterials remains a challenge. Paired materials preparation
and fabrication processes should also be further optimized for
the integration of various sensors and synaptic devices.

For material preparation by bottom-up synthesis/growth
methods, paired engineering strategies such as component mod-
ulation, doping, and surface modification can be readily used to
improve the properties and stability of the materials. The discov-
ery of 2D materials has provided a top-down mechanical exfoli-
ation approach to obtain 2D layered materials. Combining
bottom-up stacking/stitching of the layers provides a freely des-
ignable solution to device construction. This heterogeneous
stacking strategy can also be extended to other dimensional
materials to discover more exotic properties, such as quantum
dots/2D structures, nanowires/2D structures, organic/2D junc-
tions, etc. In addition, this strategy is compatible with silicon
wafer technology and provides a possibility for device size reduc-
tion and large-scale preparation by using improved interfacial
interactions (e.g., large-area growth and transfer techniques,
gold-assisted exfoliation techniques). In addition, the properties
of the novel materials can be predicted with the help of software
simulation and machine learning.

Device
Currently, most of the sensors are still at macroscopic scale,
which is difficult to match with nanoscale synaptic devices.
Therefore, it is necessary to address the issues of compatible inte-
gration between sensors and synaptic devices in terms of size
reduction and signal domain. Meanwhile, how to design the
required sensors with high sensitivity, fast response time, good
stability, and tunable synaptic properties should be emphatically
considered during device fabrication. In addition, in order to
realize multimodal sensing and computing, techniques for
decoupling multiple singles, designs for innovative device struc-
ture, and explanations for new sensing mechanisms are all nec-
essary to be further improved and developed. Besides,
considering the interaction with the environment, some irre-
sistible factors (such as noise and other issues) can interfere with
the signal from the sensors, making the system less stable and
16/j.mattod.2022.09.012
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FIGURE 10

Roadmap of bioinspired interactive neuromorphic devices.
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reliable. The signal integration problem can be solved by data
fusion strategies. Pre-processing of the signal (e.g., data format,
dimensionality, sparsity mismatch) can be combined with
machine learning and other means to improve the recognition
accuracy. The limitation of sensor size makes the system chal-
lenging for further integration. One strategy is to continue
exploring approaches to reduce the size of sensors and synaptic
devices. The complexity of system integration can be simplified
by developing devices with new materials, new structures, and
new principles that explore the inherent properties of the mate-
rials/structures, such as piezoelectric properties, optoelectronic
properties, temperature and humidity sensing properties, and
chemical sensing properties, to enable in situ detection and sig-
nal processing.
Network
From the aspect of neural network, the plasticity of synaptic
devices, the linearity and high symmetry of updated conduc-
tance, and the stability between devices are the prerequisites
for hardware-level artificial synapse arrays to establish highly
accurate software-level artificial neural networks and to imple-
ment comprehensive solutions to complex and realistic prob-
lems. In addition, paired algorithms should be elaborated for
specific sensing modes or novel device structures to support more
sophisticated neuromorphic computation and patterns
recognition.
Please cite this article in press as: J. Yu et al., Materials Today, (2022), https://doi.org/10.10
System
From the aspect of system integration, energy consumption is an
everlasting theme with the increased integration level. To solve
this problem, how to reduce the power consumption of a single
device for the underlying hardware and optimize the neural net-
work architecture and algorithms for software is of great
significance.

The proposed bioinspired interactive neuromorphic devices
provide solutions to next generation of interactive sensation/
memory/computation toward the development of multimodal,
low-power, and large-scale intelligent systems endowed with
neuromorphic features. Interactive devices/systems embodied
neuromorphic intelligence promise to interact with the environ-
ments, humans, and robotics more smoothly and adaptively,
enabling to construct compact and energy-efficient neuromor-
phic Internet of Things capable of perceiving, computing, learn-
ing, and handling on real-world problems.
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